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Abstract In this paper, we present a general purpose network clustering algorithm
based on a novel clique relaxation concept of k-community, which is defined as
a connected subgraph such that endpoints of every edge have at least k common
neighbors within the subgraph. A salient feature of this approach is that it does
not use any prior information about the structure of the network. By defining a
cluster as a k-community, the proposed algorithm aims to provide a clustering of a
network into k-communities with varying values of k. Even though the algorithm
is not designed to optimize any particular performance measure, the computational
results suggest that it performs well on a number of criteria that are used in literature
to evaluate the quality of a clustering.

1 Introduction

Network (graph) based data mining is an emerging field that studies network repre-
sentations of data sets generated by an underlying complex system in order to draw
meaningful conclusions regarding the system’s properties. In a network representa-
tion of a complex system, the network’s nodes typically denote the system’s entities,
while the edges between nodes represent a certain kind of similarity or relationship
between the entities. Network clustering, aiming to partition a network into clusters
of similar elements, is an important task frequently arising within this context. The
form of each cluster in the partitioning is commonly specified through a predefined
graph structure. Since a cluster is typically understood as a “tightly knit” group of
elements, the graph theoretic concept of a clique, which is a subset of nodes induc-
ing a complete subgraph, is a natural formalization of a cluster that has been used in
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many applications. This results in partitioning into “ideal” clusters, with the highest
possible level of cohesiveness one can hope for.

The flawlessness of the clique structure as a theoretical formalization of a co-
hesive cluster turns into a “curse of perfection” when it comes to practical appli-
cations. Since each node in a clique is required to be connected to all other nodes
in the clique, a highly cohesive structure might not get identified as a cluster by
the mere absence of a few edges. In real life data sets, this is of critical importance
because some edges could be missing either naturally or due to erroneous data col-
lection. Moreover, given that networks arising in many important applications tend
to be very large with respect to the number of nodes and very sparse in terms of the
relative number of edges, the clique clustering usually results in meaninglessly large
number of clusters in such situations. In addition, computing large cliques and good
clique partitions are computationally challenging problems, as finding a maximum
clique and a minimum clique partition in a graph are classical NP-hard problems [8].

To circumvent these drawbacks of cliques, researchers in several applied fields,
such as social network analysis and computational biology, have defined and stud-
ied structures that relax some of the properties of cliques, and hence are aptly called
clique relaxations. Some of the popular clique relaxations include s-plexes, that re-
quire each vertex to be connected to all but s other vertices [11]; s-clubs, that require
the diameter of the induced subgraph to be at most s [2]; and y-quasi-cliques, which
require the density of the induced subgraph to be at least y [1]. It should be noted
that each of 1-plex, 1-club and 1-clique represents a clique. By relaxing the prop-
erties of a clique, namely the degree, diameter, and density, these clique relaxations
capture clusters that are strongly but not completely connected. However, like the
clique model, these clique relaxations still suffer from the drawback of being com-
putationally expensive.

In 1983, Seidman [10] introduced the concept of a k-core that restricts the min-
imum number k of direct links a node must have with the rest of the cluster. Using
k-cores to model clusters in a graph has considerable computational advantages over
the other clique clique relaxation models mentioned above. Indeed, the problem of
finding the largest k-core can be easily solved in polynomial time by recursively
removing vertices of degree less than k. As a result, the k-core model has gained
significant popularity as a network clustering tool in a wide range of applications.
In particular, k-core clustering has been used as a tool to visualize very large scale
networks [4], to identify highly interconnected subsystems of the stock market [9],
and to detect molecular complexes and predict protein functions[5, 3]. On the down-
side, the size of a k-core may be much larger than k, creating a possibility of a low
level of cohesion within the resulting cluster. Because of this, a k-core itself may
not be a good model of a cluster, however, it has been observed that k-cores tend
to contain other, more cohesive, clique relaxation structures, such as s-plexes, and
hence computing a k-core can be used as a scale-reduction step while detecting other
structures [6].

Most recently, the authors of the current paper proposed yet another clique relax-
ation model of a cluster, referred to as k-community, that aims to benefit from the
positive properties of k-cores while ensuring a higher level of cohesion [12]. More
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specifically, a k-community is a connected subgraph such that endpoints of every
edge have at least kK common neighbors within the subgraph. The k-community
structure has proven to be extremely effective in reducing the scale of very large,
sparse instances of the maximum clique problem [12]. This paper explores the po-
tential of using the k-community structure as a network clustering tool. Even though
the proposed clustering algorithm does not aim to optimize any of the quantitative
measures of clustering quality, the results of numerical experiments show that it per-
forms quite well with respect to most of such measures available in the literature.

The remainder of this paper is organized as follows. Section 2 provides the nec-
essary background information. Section 3 outlines the proposed network clustering
algorithm. Section 4 reports the results of numerical experiments on several bench-
mark instances, and Section 5 concludes the paper.

2 Background

In this paper, a network is described by a simple undirected graph G = (V,E) with
the set V.= {1,2,...,n} of nodes and the set E of edges. We call a pair of nodes
u and v such that (u,v) € E adjacent or neighbors. For a node u, let Ng(u) = {v:
(u,v) € E} denotes the neighborhood of u in G. Then the degree degg(u) of uin G is
given by the number of elements in Ng(u). Let 6 (G) denote the minimum degree of
anode in G. For a subset C of nodes, G[C] = (C,EN(C x C)) denotes the subgraph
induced by C. Next we define two clique relaxation concepts that play a key role in
this paper.

Definition 1 (k-core). A subset of nodes C is called a k-core if G[C] is a connected
graph and 6(G[C]) > k.

Definition 2 (k-community). A connected subgraph G' = (V/,E’) of G is a k-
community if any two vertices u,v € V' are connected if and only if (u,v) € E and
|NG/(M) ﬂNG/(v)| Z k.

Given a positive integer k, both of these structures are in essence trying to find a
cluster of vertices that satisfies some minimum node degree requirements. In the
case of k-core, the presence of each node has to be supported by the presence of at
least k neighbors, while in the case of k-community, the presence of each edge has
to be supported by the presence of at least k alternative edge-disjoint paths of length
two. It is instructive to note that every k-community is also a (k+ 1)-core, but the
converse is not true. Given a positive integer k, all k-communities of a graph G can
be easily computed as outlined in Algorithm 1.
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Algorithm 1 k — Community(G): Algorithm to find k-communities of G

I: E'+E

2: repeat

3 E«E

4 E'=¢

5 for every (i, j) € E do

6: if i, j have > k common neighbors in G=(V,E) then
7: E' «+— E'U{(i,))}

8 end if

9 end for
10: until E = E’
11: return All the connected components of G'(V, E’) as the k-communities.

3 Clustering Algorithm

The algorithm described in this section is based on the idea of finding k-communities
for large k and placing them in different clusters. To this end, we identify the largest
k' such that the k’-community of G is non-empty, and place all k’-communities
formed in distinct clusters. Once this has been done, all the nodes that have been
placed in clusters are removed from G and the whole procedure is repeated till ei-
ther k becomes small or no vertices are left to cluster. If any vertex is left to cluster,
we attach it to the cluster that contains the most neighbors of that vertex. The pro-
cedure is described in Algorithm 2.

In this algorithm, we stop when k becomes small enough so that a k-community
becomes meaningless. For example, any set of vertices that induce a tree will form
a 0-community. While in some cases this might be the best possible option (the
original graph is a forest), for most clustering instances we would like the vertices
in a cluster to share more than just one edge with the remaining nodes. To get a
good sense of what this small enough value should be, we evaluate how good the
clustering is when the least k is in the range [/, u], and pick the best one out of those.
For the results in this paper, the values of 1 and [ used were 8 and O respectively.

In Algorithm 2, we can replace k-community in step 5 with k-core, with the
remaining steps of the algorithm as they are, to obtain a core-based clustering.

It should be noted that the clustering can further be improved by using a local
search on any criteria provided such as modularity, performance, aixe and aixc as
described in the DIMACS 2011 challenge [7]. However, in this algorithm we only
provide results obtained from a general approach that is not designed to optimize
any of these measures. Furthermore, another advantage of this method is that it does
not use any prior information about the graph such as the number of clusters, degree
distribution, etc. This makes it a very general approach that is applicable even when
no information about the structure of the graph is available.

Some illustrations of clusterings found by the k-core and k-community approach
described in this section are provided in Figure 1. It should be noted that, although
k-communities are strictly stronger relaxations, the clustering formed by the core-
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Algorithm 2 k—Community Clustering(G): Algorithm to find clusters in G

l: G+ G

2: €0

3: repeat

4: k< highest integer such that k-community(G’) is non-empty.
5:  Find all the k-Communities in G’ and add them to &.

6:  Find the set of vertices L that are not yet clustered.

7. G +G[L).

8: if k < u then

9: e F
10: for every v € L do
11: Add v to the cluster C* € €* which maximizes |[N(v) NC*|.
12: end for
13:  endif

14: until k=1 or G is empty

15: for every v € L do

16:  Addv to the cluster C € ¢ which maximizes |[N(v) NC|.
17: end for

18: % + argmaxg modularity(%¥).

19: return ¢

based approach can in some cases be better than that obtained using the community-
based approach.

4 Computational Results

In this section we provide some computational results obtained by using the k-
community and k-core clustering on the graph sets provided in the DIMACS 2011
challenge [7]. We have targeted the test sets clustering and walshaw for our experi-
ments.

Table 1 presents the modularity and number of clusters of the clustering formed
by the k-core and k-community clustering for 19 clustering and 18 walshaw graphs.
For each graph, the higher of the two modularities as found be the two methods
is highlighted in bold. It should be noted that the k-community clustering is better
on 25 of the 37 graphs tested. A specially noteworthy graph is the football graph,
in which each college plays more or less the same number of games, with games
between different conferences also present. As a result, the whole graph is identified
as a 7-core and placed in one single cluster. On the other hand, the k-community
clustering is able to identify 13 conferences and sub-conferences as clusters. The
second graph illustrated in Figure 1 is similar in structure to the football graph.

In addition, Table 1 also reports the time taken by the two approaches on each of
the graphs. It can be seen that our approach is effective even for large graphs with
more than 200,000 vertices.

Table 2 presents the coverage, mirror coverage and performance for the same
clusterings that were presented in table 1. For each graph, the table highlights the
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Fig. 1: Clustering found by the k-core and k-community approaches on some illus-
trative graphs. The checkmark indicates that the expected clustering was found.

higher performance entry amongst k-core and k-community clustering, subject to
the condition that the coverage and mirror coverage were more than 0.5. Again, it
should be noted that k-community clustering performs better than k-core clustering
for 23 out of the 37 graphs tested.

5 Conclusion

This paper introduces k-community partitioning, which can be thought of as some-
thing between k-core clustering and clique partitioning. The use of polynomially
computable k-community not only provides a faster approach, but also provides a
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Table 1: Modularity of clustering found by using the community based and core
based approaches. The modularity that is higher between the two methods is high-

lighted in bold.
Graphs core-based community-based

n m Mod Clusters Time(s) Mod Clusters Time

Clustering

karate 34 78 0.25 3 0.05 0.40 4 0.03
dolphins 62 159 0.11 5 0.05 0.49 6 0.03
polbooks 105 441 0.49 3 0.03 0.39 8 0.05
adjnoun 112 425 0.12 4 0.03 0.04 2 0.03
football 115 613 0.00 1 0.09 0.57 13 0.06
celegans_metabolic 453 2025 0.23 19 0.08 0.28 30 0.06
jazz 198 2742 0.33 6 0.08 0.28 8 0.09
netscience 1589 2742 0.86 576 0.20 0.85 590 0.19
email 1133 5451 0.30 7 0.14 0.34 72 0.19
power 4941 6594 0.79 13 0.88 0.85 189 0.88
polblogs 1490 16715 0.20 274 0.36 0.16 279 0.56
hep-th 8361 15751 0.56 2509 1.16 0.67 2359  2.06
PGPgiantcompo 10680 24316 0.77 104 2.67 0.75 84 223
cond-mat 16726 47594 0.62 2852 5.33 0.65 3113 7.81
as-22july06 22963 48436 0.43 33 3.70 0.50 162 3.95
cond-mat-2003 31163 120029 0.53 3568  23.55 0.54 4339 24.42

G_n_pin_pout
coAuthorsCiteseer
coAuthorsDBLP

Walshaw

add20.graph
data.graph
add32.graph
besstk33.graph
whitaker3.graph
wing_nodal.graph
vibrobox.graph
besstk29.graph
cti.graph
memplus.graph
besstk30.graph
besstk31.graph
besstk32.graph
fe_body.graph
finan512.graph
598a.graph
fe_ocean.graph
m14b.graph

100000 501198
227320 814134
299067 977676

2395 7462
2851 15093
4960 9462
8738 291583
9800 28989
10937 75488

12328 165250
13992 302748
16840 48232
17758 54196
28924 1007284
35588 572914
44609 985046
45087 163734
74752 261120
110971 741934
143437 409593
214765 1679018

0.74 2705 421.96
0.64 1911 651.23

0.57 11 0.23
0.33 3 0.34
0.47 113 0.45
0.21 35 4.94
0.43 2 1.53
0.12 19 4.80

0.50 105 3.53
0.16 376 591

0.47 2 5.50
0.52 14 6.89
0.60 420  60.82
0.74 266  25.24
0.75 402 55.06
0.64 581 3933
0.40 513 77.64
0.48 24 199.58
0.09 20 460.94
0.01 3 1074.65

0.20 4484 157.55
0.74 3696 449.62
0.65 5904 879.48

0.57 11 0.28
0.49 5 027
0.87 70 0.25
0.19 77 12.05
0.00 1 161
0.55 26 231

0.42 269 4.26
0.54 517 14.67
0.00 1 463
0.52 14 6.77
0.49 791 133.61
0.69 414 27.34
0.66 629 131.68
0.59 10291 52.38

0.78 96 27.78
0.59 170 251.60
0.00 1311.90

0.69 134 394.47
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Table 2: Performance value of clustering found by using the community-based and
core-based approaches. The performance that is higher between the two methods
given that the coverage and mirror coverage are higher than 0.5 is highlighted in
bold. The clustering used is the same as the one used in Table 1.

Graphs core-based community-based

n m Cov M-Cov Perf Cov M-Cov Perf

Clustering
karate 34 78 0.79 0.61 0.64 0.73  0.80 0.79
dolphins 62 159 0.87 041045 0.68 0.88 0.86
polbooks 105 441 0.85 0.71 0.73 0.56  0.89 0.87
adjnoun 112 425 0.70  0.55 0.56 073 0.17 0.21
football 115 613 1.00  0.00 0.09 0.66 099 0.96
celegans_metabolic 453 2025 048 0.87 0.86 044 092 091
jazz 198 2742 0.58  0.86 0.82 043 090 0.84
netscience 1589 2742 0.88  1.00 1.00 086 1.00 1.00
email 1133 5451 0.68 0.71 0.71 039 094 094
power 4941 6594 097 0.81 0.81 086 099 0.99
polblogs 1490 16715 0.40 0.86 0.85 033 0.88 0.87
hep-th 8361 15751 0.68 0.92 0.92 0.67 1.00 1.00
PGPgiantcompo 10680 24316 0.80  0.96 0.96 0.77 096 0.96
cond-mat 16726 47594 0.67 0.95 0.95 0.65 1.00 1.00
cond-mat-2003 31163 120029 0.59 0.94 0.94 0.55 1.00 1.00
G_n_pin_pout 100000 501198 038 0.81 0.81
as-22july06 22963 48436 072  0.73 0.73 0.65 0.90 0.90
coAuthorsCiteseer 227320 814134 0.76  0.98 0.98 0.75  0.99 0.99
coAuthorsDBLP 299067 977676 0.68 0.95 0.95 0.65 099 0.99
Walshaw

add20 2395 7462 0.70  0.89 0.89 0.70  0.89 0.89
data 2851 15093 098 044 044 098 0.58 0.58
add32 4960 9462 0.96 0.63 0.63 095 0.94 0.94
besstk33 8738 291583 090 0.39 0.39 0.76  0.44 044
whitaker3 9800 28989 098 0.45 045 1.00  0.00 0.00
wing_nodal 10937 75488 098 0.17 0.17 064 091 091
vibrobox 12328 165250 0.63  0.88 0.88 045 0.99 0.99
besstk29 13992 302748 094 041042 055 099 0.99
cti 16840 48232 0.99 047 047 1.00  0.00 0.00
memplus 17758 54196 0.82 0.76 0.76 082 0.76 0.76
besstk30 28924 1007284 0.69 0.94 0.94 0.49 1.00 1.00
besstk31 35588 572914 0.78  0.95 0.95 076 091 091
besstk32 44609 985046 0.81  0.96 0.96 0.74 094 0.94
fe_body 45087 163734 096 0.72 0.72 074 0.85 0.85
finan512 74752 261120 095 0.63 0.63 0.81 0.98 0.98
598a 110971 741934 095 0.54 0.54 073 085 0.85
fe_ocean 143437 409593 0.99 0.10 0.10 1.00  0.00 0.00

m14b 214765 1679018 1.00  0.01 0.01 0.77 092 0.92
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more effective clustering method by being able to identify cohesive structures that
might not be cliques. k&-Community clustering also provides advantages over k-core
clustering due to the more cohesive nature of a k-community. As our computational
results show, both the k-core and k-communities perform well for certain graphs,
but k-community approach outperforms the k-core approach in general.
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